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Abstract
We investigate the influence of the Fano effect on the Josephson current through
a quantum dot (QD) coupled to two identical superconductors (SCs). Our
attention is focused on the situation where the Kondo spin singlet survives the
superconductivity and the finite-U slave-boson mean-field method is adopted
to treat the Kondo correlation. With the direct coupling between the two
SCs increased, the Josephson current varies in different manners in different
regimes. This is consistent with the variation of Josephson coupling, which
exhibits characteristics similar to those shown by the conductance through
a QD connected to normal leads. But unlike the normal conductance, a
negative Josephson coupling region is formed in the dip of the characteristic
asymmetric peak–dip structure. Accompanying this 0–π transition, a new
kind of intermediate states is found, which are different from those caused by
effective ferromagnetic interaction. This 0–π transition and the intermediate
states are yielded entirely by the Fano effect.

1. Introduction

The quantum interference effect plays an important role in the mesoscopic physics. When
a discrete energy level is embedded in a continuum energy state, the quantum interference
between two configurations—one through the resonant level and the other directly through
the continuum—leads to the Fano effect [1], a ubiquitous phenomenon first found in atomic
physics then in other areas [2–4], which is characterized by an asymmetric line shape. Because
of its tunability, quantum dot (QD) systems have attracted a lot of attention. When a dot is
connected to normal metallic leads, the coupling between the localized spin on the dot and
conduction electrons leads to the Kondo correlation, which is described by an energy scale
TK, the so-called Kondo temperature. When a QD is in the Kondo regime [5–9], the localized
spin and conduction electrons forms a spin singlet state, which yields the Abrikosov–Suhl
resonance and profoundly affects the electronic transport. If the Fano effect is introduced in a
QD system, the Fano–Kondo effect, frequency doubling of Aharonov–Bohm (AB) oscillation
and pinning of the AB maximum are found [10–13].

When a barrier is sandwiched between two identical superconductors (SCs), a Josephson
current J can be yielded by the phase difference ϕ between the two SCs. When the tunnelling
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Figure 1. Schematic illustration of the structure.

through the barrier is weak and conserves spin, the Josephson current can be expressed as
J = Jc sin(ϕ), where the Josephson coupling Jc is proportional to the normal conductance
through the barrier. But if the barrier is ferromagnetic, negative Josephson coupling is
found [14]. Embedding a QD in between two SCs results in competition between the
Kondo effect and superconductivity at low temperature [15, 16]. With TK smaller than the
superconducting gap �, the Kondo spin singlet is broken, which leads to negative Jc or π-
junction. With TK > �, the Josephson current is enhanced by the Kondo effect and the
Josephson coupling is positive (0-junction). In the intermediate regime, a ‘0’ or ‘π’ junction
can be found according to the location of the global minimum of the bound state energy being
at 0 or π [17–24]. Now, it is natural to ask how the Fano effect influences the Josephson current
if the two SCs are coupled by direct tunnelling.

In the present paper, we focus our attention on the situation where TK > � and the
Kondo singlet survives the superconductivity. Our purpose is to answer the following four
questions. (i) Does the Fano effect influence J in the same manner in different regimes?
(ii) If not, what is the underlying rule? (iii) Can the Fano effect yield the 0–π transition and
corresponding intermediate states? (iv) If it can, how about the relationship between this kind
of transition and that caused by the effective ferromagnetic interaction? To this purpose, we
assume a structure illustrated schematically in figure 1, describe the superconductivity in the
BCS scheme and adopt the finite-U slave-boson mean-field theory ( f -U SBMFT) [25, 26]
to treat the Kondo correlation. As we know from the previous studies [20–22], the SBMFT
can give qualitative correct results when TK > �. With the direct coupling between the two
SCs increased, the Josephson current varies in different manners in different regimes. This is
consistent with the variation of Josephson coupling, which exhibits characteristics similar to
those of the conductance through a QD connected to normal leads and shows an asymmetric
line shape, the universal characteristic of the Fano effect. But unlike the normal conductance,
an NJC region is formed in the dip of the asymmetric peak–dip structure. At the edges of the
NJC region, a new kind of intermediate states is found. They are different from the ‘0’ and
‘π’ states caused by the competition between the Kondo effect and superconductivity. This
kind of 0–π transition and the associated intermediate states are yielded entirely by the Fano
effect. The existence of an NJC region is a special characteristic of the Fano effect in Josephson
junctions, and the Fano effect is an important way leading to the π-junction, parallel with that
through the effective ferromagnetic interaction.

The organization of this paper is as follows. In section 2, the theoretical model and
calculation method are illustrated. In section 3, the numerical results and discussion on them
are presented. A brief summary is given in section 4.

2. Model and formulae

In the present paper, we investigate the influence of the Fano effect on the Josephson current
through a QD, which is coupled to two SCs. The structure is schematically illustrated in figure 1,



Fano effect on Josephson current 4639

where one dot, with a single-particle energy level εd and an on-site Coulomb interaction
U , is connected to SCs by hopping integral tL . Here, the two SCs are assumed entirely
identical except for a phase difference ϕ, and without loss of generality it is assumed that
ϕL = −ϕR = ϕ/2. The two SCs are also coupled directly with each other by a tunnelling
matrix element td . Employing the BCS theory to deal with the SCs, we describe this mesoscopic
system by the following 1D tight-binding Hamiltonian:

H = HL + HR + HD + HT , (1)

where H j ( j = L, R) HD and HT are the Hamiltonians of the leads, the dot and the coupling
between them, respectively. They are

HL = −
−1∑

i=−∞

{
t
∑

σ

c†
i−1,σ ci,σ + �eıϕ/2c†

i,↑c†
i,↓ + H.c.

}
, (2)

HR = −
∞∑

i=1

{
t
∑

σ

c†
i,σ ci+1,σ + �e−ıϕ/2c†

i,↑c†
i,↓ + H.c.

}
, (3)

HD = εd

∑

σ

c†
0,σ c0,σ + Un0,↑n0,↓ (4)

and

HT = −
∑

σ

{
tL(c†

−1,σ + c†
1,σ )c0,σ + tdc†

1,σ c−1,σ + H.c.
}

. (5)

Here n0,σ = c†
0,σ c0,σ , with σ = ↑ or ↓.

The normal state Kondo temperature TK is given by TK = U
√

JK

2π
exp(−π/JK) [27], with

JK = −2U�
εd (εd +U)

. Here, with the Fermi energy being set as zero, the hybridization strength

� = 2t2
L/t (cf [28]) and the correlation length of the spin singlet ξK = 2t/TK at zero

temperature. In the present paper, we are interested in the situation where TK > � and
the Kondo singlet state survives the superconductivity. As we know from the previous
studies [20–22], in that regime, treating the Kondo correlation with the slave-boson mean-field
theory (SBMFT) can give qualitatively correct results. Here, the finite-U SBMFT of Kotliar
and Ruckenstein (KR) [25, 26] is adopted. In the framework of this approach, four auxiliary
boson fields e, pσ and d are introduced, which act as projection operators onto the empty,
singly occupied and doubly occupied electronic states at the dot. To eliminate the unphysical
states, three constraints are imposed:

∑
σ p†

σ pσ + e†e + d†d = 1 and n0,σ = p†
σ pσ + d†d .

To obtain the correct result in the noninteracting limit, the fermion operator c0,σ should be
replaced by c0,σ zσ , with zσ = (1 − d†d − p†

σ pσ )−1/2(e† pσ + p†
σ̄ d)(1 − e†e − p†

σ̄ pσ̄ )−1/2.
Therefore the Hamiltonian (1) can be replaced by the following effective Hamiltonian:

Heff = HL + HR + H̃D + H̃T + λ(1)

(∑

σ

p†
σ pσ + e†e + d†d − 1

)

+
∑

σ

λ(2)
σ (n0,σ − p†

σ pσ − d†d), (6)

where the three constraints are incorporated by the three Lagrange multipliers λ(1) and λ(2)
σ .

Here, the original HD and HT are replaced by

H̃D = εd

∑

σ

c†
0,σ c0,σ + Ud†d (7)

and

H̃T = −
∑

σ

{
tL(c†

−1,σ + c†
1,σ )c0,σ zσ + tdc†

1,σ c−1,σ + H.c.
}

. (8)
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To solve the effective Hamiltonian (6) at zero temperature,we first replace the slave boson fields
by their expectation values, then obtain the values of e, pσ , d , λ(1) and λ(2)

σ by minimization
of the ground state energy E0 of the essentially noninteracting Hamiltonian (6) with respect
to these parameters [26]. This is equivalent to the approach using the functional integral
method combined with the saddle-point approximation, and leads to a set of self-consistent
equations [25, 26]:

∑

σ

p2
σ + e2 + d2 = 1, (9)

〈0|n0,σ |0〉 = p2
σ + d2, (10)

−tL

∑

σ

Re
{
〈0|(c†

−1,σ + c†
1,σ )c0,σ |0〉

} ∂zσ

∂e
+ λ(1)e = 0, (11)

−tL

∑

σ ′
Re

{
〈0|(c†

−1,σ ′ + c†
1,σ ′)c0,σ ′ |0〉

} ∂zσ ′

∂pσ

+ λ(1) pσ − λ(2)
σ pσ = 0, (12)

and

∑

σ

{
−tL Re[〈0|(c†

−1,σ + c†
1,σ )c0,σ |0〉]∂zσ

∂d
− λ(2)

σ d

}
+ λ(1)d + Ud = 0. (13)

To self-consistently solve these equations, we have to calculate the expectation values
such as 〈0|c†

j,σ ci,σ |0〉, with |0〉 the ground state corresponding to a certain set of variational
parameters, then update the variational parameters from the above self-consistent equations,
and repeat these two steps until numeric convergence is reached. If a quasiparticle wavefunction
is expressed as α†|F〉 = ∑

i(ui c
†
i,↑ − vi ci,↓)|F〉 with |F〉 the Fermi sea, acting as a

background, whose intrinsic structure is irrelevant with our calculation, the corresponding
Schrödinger equation can be diagonalized to obtain a series of excited eigenstates, {α†

n |F〉}.
c†

i,↑ and ci,↓ can be expressed by the quasiparticle operators {α†
n} and {ᾱn}. Here, ᾱ†

n |F〉 =
∑

i (ui,nc†
i,↓ + vi,nci,↑)|F〉, the spin degenerate state with α†

n |F〉. Because |0〉 is a state with no

quasiparticle excited, the expectation value of 〈0|c†
j,σ ci,σ |0〉 can be written as: 〈0|c†

j,σ ci,σ |0〉 =∑
n v�

j,nvi,n . Generally, those expectation values can be analytically expressed in terms of
variational parameters with the help of the Nambu representation and the Green-function
technique [23, 29, 30], but the expressions are complex and tedious when td is introduced, and
we prefer direct diagonalization. In practical calculation, the numeric diagonalization can be
performed only in a finite cluster. (Here, the QD is located at the centre of the cluster.) If the
cluster size is much larger than the coherence length ξK of the singlet state, the results obtained
from the cluster calculation are identical with those from the original system [31, 32].

Due to the spin degeneracy, only five variational parameters should be determined. They
are e, p, d , λ(1) and λ(2). As soon as the five variational parameters are determined, the
eigenenergies and the corresponding wavefunctions of Andreev bound states can be obtained.
At zero temperature, the Josephson current can be expressed as:

J (ϕ) = 2

�

∑

λ

∂ Eλ(ϕ)

∂ϕ
= 2 Im

∑

λ

{
eıϕ/2

−1∑

i=−∞
〈λ|c†

i,↑c†
i,↓|λ〉 − e−ıϕ/2

∞∑

i=1

〈λ|c†
i,↑c†

i,↓|λ〉
}
.

(14)

Here, 〈λ|c†
i,↑c†

i,↓|λ〉 = v�
i,λui,λ, with |λ〉 an Andreev bound state below the Fermi level and Eλ

the corresponding eigenenergy.



Fano effect on Josephson current 4641

Figure 2. E–ϕ and J –ϕ curves for different td with εd = −0.7 ((a) and (b)), εd = 0 ((c) and (d))
and εd = 0.7 ((e) and (f)). Here, solid lines correspond to td = 0, dashed 0.6 and dotted 1. The
other parameters are t = 1, tL = 0.4, U = 1.4 and � = 0.04.

3. Results and discussion

In the following calculation, we always set t = 1, tL = 0.4, U = 1.4 and � = 0.04 except
in figure 5(b). At the particle–hole symmetric point εd = −U/2, the Kondo temperature of
the normal state TK = 0.0541 and the corresponding coherent length ξK = 37.0. Here, � is
smaller than TK. Generally, the effective Kondo temperature with td �= 0 is always larger than
� in our SBMFT calculation, and in our numeric diagonalization the cluster size is set as 300,
which can guarantee the numeric convergence even if td = 1.

In figure 2, the variations of bound state energy E below the Fermi level and Josephson
current J with ϕ are presented for different td . Here, the subscript λ of E is omitted because
of the spin degeneracy. The E–ϕ curve corresponding to the bound state above the Fermi level
is symmetric with the plotted one. The quantum interference effect influences E and J in
different manners when the QD is in different regimes, but E and J exhibit similar variation
trend at the same εd . When εd = −0.7, the oscillation amplitudes of E–ϕ and J–ϕ curves
are suppressed by the Fano effect and the shape of the J–ϕ curve becomes more sinusoidal.
The situation with εd = 0.7 is just the opposite: the oscillation amplitudes are increased and
the shape of J–ϕ curves is more sawtooth-like. In the mixed-valence regime with εd = 0, the
oscillation amplitudes are first increased then suppressed. Generally, with these three εd , the
energy minimum of the bound state is located at ϕ = 0, associated with positive Josephson
coupling, which corresponds to the so-called 0 junction. But an exception exists at εd = −0.7
with td = 1 where the bound state minimum is removed from ϕ = 0 and J ∝ –ϕ around
ϕ = 0. (The corresponding E–ϕ and J–ϕ curves are given separately in figures 4(c) and (d).)
This exception implies a 0–π transition caused by the Fano effect.

These results are consistent with the characteristics shown by the Ec–εd and Jc–εd curves.
Here, Ec and Jc are defined as E(ϕ = π/2) and J (ϕ = π/2), respectively. They are plotted
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Figure 3. Ec–εd (a) and Jc–εd (b) curves for td = 0 (solid), 0.6 (dashed) and 1 (dotted). The other
parameters are the same as in figure 2.

in figure 3 for different td . These two types of curves exhibit characteristics similar to those
shown by the conductance through a QD connected to normal metallic leads. When td = 0,
a high plateau appears in the regime [−U, 0], and with |εd + U/2| 
 �, Ec approaches −�

whereas Jc approaches zero. With the Fano effect introduced the plateau is replaced by a
peak–dip structure in both of the two curves, and with |εd + U/2| 
 � both Ec and Jc are
enhanced. In the normal conductance, a Fano–Kondo plateau is sandwiched in between peak
and dip, but in the Ec and Jc curves, because of the relatively large �, the Fano–Kondo plateau
is merged into the peak–dip structure. When td = 1 (the normal transmissivity through the
direct channel is unity) a low plateau appears in the regime [−U, 0], and outside that regime
Ec and Jc are further enhanced. These account for the different variation trends of the E–ϕ

and J–ϕ curves in different regimes.
The asymmetric line shape is a universal characteristic of the Fano effect, and in Josephson

junctions this is shown in the Ec–εd and Jc–εd curves. On the other hand, as we have said in
the introduction, the Josephson coupling Jc is proportional to the normal conductance only if
the tunnelling process is weak and conserves spin. Although Jc exhibits characteristics similar
to those of the normal conductance, the difference between them is remarkable. The most
striking is the appearance of a negative Josephson coupling region. (In figure 3(b), a thin
horizontal line indicates the position where Jc = 0.) This region always exists in the dip or
low plateau with td �= 0. Because the appearance of an NJC region is a special characteristic
of Josephson junctions with the Fano effect, we focus our attention on its properties in the
following.

In figure 4, the E–ϕ and J–ϕ curves are given at εd = −0.7 and −0.98 with td = 1. With
εd = −0.98, the minimum of the bound state energy is located at ϕ = π , and around ϕ = 0,
J ∝ −ϕ. This is a clear demonstration of the 0–π transition caused by the Fano effect: if the
SC leads are connected into a ring, at zero temperature, the ground state is at the π state and
the ring is threaded through with half a flux quantum because of the flux quantization. The
situation with εd = −0.7 is subtle: it is close to but outside the NJC region (cf figure 3(b)).
The maximum of bound state energy is still located at ϕ = π , but now the minimum is moved
away from ϕ = 0, and two identical minima appear symmetrically with ϕ = π . Around
ϕ = 0, J is also ∝ –ϕ, like a junction with negative Josephson coupling, but with ϕ further
increased the absolute value of J decreases and then its sign is changed before ϕ = π/2. The
subsequent behaviour of J is somewhat sinusoidal, like a junction with positive Josephson
coupling. This corresponds to an intermediate state. With εd entering the NJC region, the
two minima move towards each other until they coincide at ϕ = π where the structure is
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Figure 4. E–ϕ and J –ϕ curves for εd = −0.98 ((a) and (b)) and −0.7 ((c) and (d)) with td = 1.
The other parameters are the same as in figure 2.

altered into a π-junction. Unlike the ‘0’ and ‘π’ states coming from the competition between
the Kondo effect and superconductivity [17–24], the appearance of the two minima is not the
result of the crossing of different bound energy levels, and no kink is found in the E or J
curves. This kind of 0–π transition and the accompanied intermediate states are peculiar to
the Fano effect.

This point can be further clarified by investigating the Jc–εd curves in the situation with
U = 0, which are given in figure 5(a) for different td . When td = 0, the Andreev reflection
causes a resonant peak at εd = εF = 0 with the peak width being 2�. When td = 0.6 the
quantum interference between the path through the dot and the direct path leads to a peak–dip
structure, and with td = 1 a dip structure is left. These results are also similar to those of the
corresponding normal conductance, and the asymmetric line shape of the Jc–εd curve reflects
the universal characteristic of the Fano effect. As in the situation with U �= 0, an NJC region
is formed in the dip when td �= 0, and intermediate states similar to those with U �= 0 can
be found at the edges of the NJC region (not presented here). The 0–π transition is entirely
yielded by the Fano effect no matter whether there is a Kondo correlation or not, and the
appearance of the NJC region is a special characteristic of the Fano effect when Josephson
junctions are concerned. Comparing figures 3(b) and 5(a), we can see that the main effect
of the Kondo correlation is to change the position and extent of the NJC region. Despite the
mean-field nature of the f -U SBMFT, the existence of this new kind of 0–π transition should
be independent of which method is taken to treat the Kondo correlation. Even if the Kondo
correlation is overwhelmed by the superconductivity, the Fano effect is still an important way
leading to the 0–π transition, parallel with that through the effective ferromagnetic interaction.

As we have said at the beginning of this section, the preceding results are all obtained
with fixed tL = 0.4 and � = 0.04. To generalize the above results, in figure 5(b),
ln(−J (s)

c /�2) − ln(td/tL) curves are plotted for different � and tL , with J (s)
c the tip value of



4644 Z-Y Zhang

Figure 5. (a) Jc–εd curves for td = 0 (solid), 0.6 (dashed) and 1 (dotted). The other parameters
are t = 1, tL = 0.4, U = 0 and � = 0.04. (b) ln(−J (s)

c /�2) − ln(td/tL) curves for different �

and tL with t = 1 and U = 0.

the Jc dip. (Here, � should be understood as �/t , a dimensionless parameter.) For simplicity
of the calculation, these results are obtained with U = 0. When tL = 0.4 and � = 0.04, the
curve is approximately a straight line ln(−J (s)

c /�2) = 4 ln(td/tL) + c with c a fit parameter,
which is small but not zero, and the curve deviates from the line only in the part where td is
close to unity, corresponding to the right end of the curve. (The range of ln(td/tL) is from −∞
to ln(1/tL) for a certain tL .) With tL fixed, increasing � extends the area of that deviation,
where the curve becomes flat and lowered. In the range of � we take (from 0.04 to 0.12) this
variation is mild. A similar variation is also found when decreasing tL with � fixed. When
� = 0.08, with tL decreased from 0.4 to 0.2, this kind of variation is small; with tL = 0.1,
the variation is noticeable, and with tL = 0.01, it is prominent. Despite the extension of the
deviation, with ln(td/tL) → −∞, the curve always approaches the straight line, and with
larger � or lower tL that limit can only be reached with larger | ln(td/tL)|. This point can be
seen clearly from the curve with � = 0.08 and tL = 0.01. These observations are consistent
with our intuitive picture and further confirm the applicability of our approximation scheme.

If a magnetic flux is threaded through the area enclosed by the two paths, Josephson current
can flow through the structure even if the phase difference between the two SCs disappears.
Like the normal conductance, the doubling of the Aharonov–Bohm (AB) oscillation frequency
and the ‘pinning’ of the AB maximum are found in the Jc curves, which reflects the universal
characteristics of the Fano effect. On the other hand, as a special characteristic of the Fano
effect in Josephson junctions, an NJC region can still be found when an external magnetic flux
is introduced. These results can be expected from the perspective obtained in the preceding
paragraphs and our knowledge on the conductance through normal leads, and their details are
not given here.

4. Summary

In summary, we investigate the influence of the Fano effect on the Josephson current through
a QD in the situation where TK > � and deal with the Kondo correlation by the f -U
SBMFT. With the direct coupling between the two SCs introduced and increased, the Josephson
current varies in different manners in different regimes. This is consistent with the variation
of Josephson coupling, which exhibits characteristics similar to those of the conductance
through a QD connected to normal leads and shows an asymmetric line shape, the universal
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characteristic of the Fano effect. But unlike the normal conductance, an NJC region is formed
in the dip of the asymmetric peak–dip structure. Accompanied by this 0–π transition, a new
kind of intermediate states is found at the edges of the NJC region, which is different from
those caused by the effective ferromagnetic interaction. This kind of 0–π transition and the
associated intermediate states can be found even when U = 0. They are yielded entirely by
the Fano effect, and the existence of an NJC region is a special characteristic of the Fano effect
in Josephson junctions. The Fano effect is an important way leading to the π-junction, parallel
with that through the effective ferromagnetic interaction.
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